Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.289
Filtrar
1.
Front Public Health ; 12: 1357107, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38560437

RESUMO

Objective: The current study aimed to assess the relation between multi-dimension poverty, treatment-seeking behavior, and antibiotic misuse among urinary tract infection (UTI) patients. Method: A cross-sectional approach was utilized to recruit patients who had a history of UTI in the previous month from two provinces of Pakistan. The treatment-seeking behavior and antibiotic misuse data were collected on a self-developed questionnaire, whereas the poverty data were collected on a modified multi-dimension poverty index (MPI). Descriptive statistics were applied to summarize the data. The logistic regression analysis was carried out to assess the association of multi-dimension poverty with patient treatment-seeking behavior and antibiotic misuse. Results: A total of 461 participants who had UTI symptoms in the previous month were recruited. Most of the participants in the severely deprived stage treated the UTI (p < 0.001); however, there was a high proportion of the participants who consulted with friends and family for UTI treatment (p < 0.001). The patients with deprivation status (deprived and severely deprived) were less associated with formal consultation. The poorer subgroups were less likely to practice antibiotic course completion. Conclusion: The current study highlighted that poverty plays an important role in antibiotic misuse. Poorer subgroups were associated with informal consultations and the incompletion of the antibiotic course. Further studies are needed to explore the potential role of poverty in treatment-seeking behavior and antibiotic misuse.


Assuntos
Antibacterianos , Infecções Urinárias , Humanos , Antibacterianos/uso terapêutico , Paquistão/epidemiologia , Infecções Urinárias/tratamento farmacológico , Infecções Urinárias/epidemiologia , Infecções Urinárias/diagnóstico , Inquéritos e Questionários , Pobreza
2.
Artigo em Inglês | MEDLINE | ID: mdl-38575491

RESUMO

Inappropriate antibiotic choice or duration of therapy for urinary tract infections (UTIs) in outpatients is common and is a major contributor to antibiotic overuse. Most studies on outpatient antibiotic stewardship for UTIs follow a pre-design or post-design with a multifaceted intervention; these trials generally have found improvement in appropriateness of antibiotic use for UTI. Audit and feedback was one of the most commonly employed strategies across these trials but may not be sustainable. Future research on antibiotic stewardship for UTIs in outpatients should measure both effectiveness and implementation success.

3.
J Infect Dev Ctries ; 18(3): 391-398, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38635608

RESUMO

INTRODUCTION: Urinary tract infection (UTI) is a common bacterial complication in pregnancy. The study aimed to estimate the prevalence, risk factors, and bacterial etiology of UTI during pregnancy and determine the efficacy of antimicrobial drugs in treating UTIs. METHODOLOGY: Urine specimens and clinical data were collected from pregnant women who attended primary health centers in Erbil, Iraq. All specimens were cultured on appropriate media and identified by standard microbiological methods. The pregnant women were grouped into symptomatic UTI group, asymptomatic bacteriuria group, and the control group. The agar dilution method was used to determine antimicrobial susceptibility. RESULTS: Among the 5,042 pregnant women included in this study, significant bacteriuria was found in 625 (12.40%) of the cases, and 198 (31.68%) had symptomatic UTI, of which 43.59% were diagnosed during the third trimester. Out of the 643 bacteria isolated, 33.28% were symptomatic UTI, of which 43.59% developed during the third trimester. There was a significant difference in the bacterial etiology between symptomatic UTI and asymptomatic bacteriuria (p = 0.002), as well as between cystitis and pyelonephritis (p = 0.017). The most common bacterial species isolated was Escherichia coli, which was susceptible to fosfomycin (100%), meropenem (99.45%), and nitrofurantoin (97.8%). CONCLUSIONS: Pregnant women are more likely to develop UTI in the third trimester. Escherichia coli is the predominant pathogen. The study suggests the use of fosfomycin, meropenem, and nitrofurantoin for the treatment of UTI. No Gram-positive isolates were resistant to daptomycin.


Assuntos
Anti-Infecciosos , Bacteriúria , Fosfomicina , Infecções Urinárias , Feminino , Humanos , Gravidez , Bacteriúria/tratamento farmacológico , Bacteriúria/epidemiologia , Bacteriúria/microbiologia , Nitrofurantoína/farmacologia , Nitrofurantoína/uso terapêutico , Fosfomicina/uso terapêutico , Gestantes , Meropeném/uso terapêutico , Infecções Urinárias/tratamento farmacológico , Infecções Urinárias/epidemiologia , Infecções Urinárias/etiologia , Anti-Infecciosos/uso terapêutico , Escherichia coli , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico
4.
Health Sci Rep ; 7(4): e2039, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38617042

RESUMO

Background and Aims: Antibiotic resistance presents a significant global public health challenge, particularly for urinary tract infections (UTIs), and is notably severe in developing countries. Surveillance of the antimicrobial susceptibility patterns of UTI-causing bacteria is crucial for effective treatment selection. This study aimed to analyze these patterns in bacteria isolated from the urine samples of patients at Mughda Medical College Hospital, Dhaka, Bangladesh. Methods: A retrospective study (January 2019 to December 2020) at Mugdha Medical College and Hospital, Dhaka, examined clinical and laboratory data from patients with positive urine cultures (≥105 CFU/mL). The study classified patients into four age groups: children (1-<18 years), young adults (18-<33 years), middle-aged adults (33-50 years), and old adults (>50 years). The standard Kirby-Bauer method was used to assess antibiotic sensitivity to 28 common antibiotics. Results: Among 243 positive urine cultures in both community- and hospital-acquired UTIs, Escherichia coli was the most common uropathogen (65.84%), followed by Klebsiella spp. (12.34%), Enterococcus spp. (8.23%), and other types of bacteria. Conclusion: Old adults are particularly vulnerable to UTIs, with E. coli being the predominant causative agent in the study region. The observed antimicrobial resistance patterns underscore the necessity of judicious antibiotic selection to effectively treat UTIs across different age groups.

5.
Proc Natl Acad Sci U S A ; 121(16): e2310693121, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38607934

RESUMO

Urinary tract infections (UTI) account for a substantial financial burden globally. Over 75% of UTIs are caused by uropathogenic Escherichia coli (UPEC), which have demonstrated an extraordinarily rapid growth rate in vivo. This rapid growth rate appears paradoxical given that urine and the human urinary tract are relatively nutrient-restricted. Thus, we lack a fundamental understanding of how uropathogens propel growth in the host to fuel pathogenesis. Here, we used large in silico, in vivo, and in vitro screens to better understand the role of UPEC transport mechanisms and their contributions to uropathogenesis. In silico analysis of annotated transport systems indicated that the ATP-binding cassette (ABC) family of transporters was most conserved among uropathogenic bacterial species, suggesting their importance. Consistent with in silico predictions, we determined that the ABC family contributed significantly to fitness and virulence in the urinary tract: these were overrepresented as fitness factors in vivo (37.2%), liquid media (52.3%), and organ agar (66.2%). We characterized 12 transport systems that were most frequently defective in screening experiments by generating in-frame deletions. These mutant constructs were tested in urovirulence phenotypic assays and produced differences in motility and growth rate. However, deletion of multiple transport systems was required to achieve substantial fitness defects in the cochallenge murine model. This is likely due to genetic compensation among transport systems, highlighting the centrality of ABC transporters in these organisms. Therefore, these nutrient uptake systems play a concerted, critical role in pathogenesis and are broadly applicable candidate targets for therapeutic intervention.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Escherichia coli Uropatogênica , Humanos , Animais , Camundongos , Transportadores de Cassetes de Ligação de ATP/genética , Fatores de Virulência/genética , Escherichia coli Uropatogênica/genética , Proteínas de Membrana Transportadoras/genética , Virulência
6.
J Agric Food Chem ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38651941

RESUMO

This work seeks to generate new knowledge about the mechanisms underlying the protective effects of cranberry against urinary tract infections (UTI). Using Caco-2 cells grown in Transwell inserts as an intestinal barrier model, we found that a cranberry-derived digestive fluid (containing 135 ± 5 mg of phenolic compounds/L) increased transepithelial electrical resistance with respect to control (ΔTEER = 54.5 Ω cm2) and decreased FITC-dextran paracellular transport by about 30%, which was related to the upregulation of the gene expression of tight junction (TJ) proteins (i.e., occludin, zonula occludens-1 [ZO-1], and claudin-2) (∼3-4-fold change with respect to control for claudin-2 and ∼2-3-fold for occludin and ZO-1). Similar protective effects, albeit to a lesser extent, were observed when Caco-2 cells were previously infected with uropathogenic Escherichia coli (UPEC). In a urinary barrier model comprising T24 cells grown in Transwell inserts and either noninfected or UPEC-infected, treatments with the cranberry-derived phenolic metabolites 3,4-dihydroxyphenylacetic acid (DOPAC) and phenylacetic acid (PAA) (250 µM) also promoted favorable changes in barrier integrity and permeability. In this line, incubation of noninfected T24 cells with these metabolites induced positive regulatory effects on claudin-2 and ZO-1 expression (∼3.5- and ∼2-fold change with respect to control for DOPAC and ∼1.5- and >2-fold change with respect to control for PAA, respectively). Overall, these results suggest that the protective action of cranberry polyphenols against UTI might involve molecular mechanisms related to the integrity and functionality of the urothelium and intestinal epithelium.

7.
Sci Rep ; 14(1): 8978, 2024 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637685

RESUMO

tRNA modifications play a crucial role in ensuring accurate codon recognition and optimizing translation levels. While the significance of these modifications in eukaryotic cells for maintaining cellular homeostasis and physiological functions is well-established, their physiological roles in bacterial cells, particularly in pathogenesis, remain relatively unexplored. The TusDCB protein complex, conserved in γ-proteobacteria like Escherichia coli, is involved in sulfur modification of specific tRNAs. This study focused on the role of TusDCB in the virulence of uropathogenic E. coli (UPEC), a bacterium causing urinary tract infections. The findings indicate that TusDCB is essential for optimal production of UPEC's virulence factors, including type 1 fimbriae and flagellum, impacting the bacterium's ability to aggregate in bladder epithelial cells. Deletion of tusDCB resulted in decreased virulence against urinary tract infection mice. Moreover, mutant TusDCB lacking sulfur transfer activity and tusE- and mnmA mutants revealed the indispensability of TusDCB's sulfur transfer activity for UPEC pathogenicity. The study extends its relevance to highly pathogenic, multidrug-resistant strains, where tusDCB deletion reduced virulence-associated bacterial aggregation. These insights not only deepen our understanding of the interplay between tRNA sulfur modification and bacterial pathogenesis but also highlight TusDCB as a potential therapeutic target against UPEC strains resistant to conventional antimicrobial agents.


Assuntos
Infecções por Escherichia coli , Proteínas de Escherichia coli , Infecções Urinárias , Escherichia coli Uropatogênica , Animais , Camundongos , Virulência/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Infecções por Escherichia coli/microbiologia , Infecções Urinárias/microbiologia , Fatores de Virulência/genética , Transferases/metabolismo
8.
Sci Rep ; 14(1): 8563, 2024 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609487

RESUMO

Heavy metal accumulation increases rapidly in the environment due to anthropogenic activities and industrialization. The leather and surgical industry produces many contaminants containing heavy metals. Cadmium, a prominent contaminant, is linked to severe health risks, notably kidney and liver damage, especially among individuals exposed to contaminated wastewater. This study aims to leverage the natural cadmium resistance mechanisms in bacteria for bioaccumulation purposes. The industrial wastewater samples, characterized by an alarming cadmium concentration of 29.6 ppm, 52 ppm, and 76.4 ppm-far exceeding the recommended limit of 0.003 ppm-were subjected to screening for cadmium-resistant bacteria using cadmium-supplemented media with CdCl2. 16S rRNA characterization identified Vibrio cholerae and Proteus mirabilis as cadmium-resistant bacteria in the collected samples. Subsequently, the cadmium resistance-associated cadA gene was successfully amplified in Vibrio species and Proteus mirabilis, revealing a product size of 623 bp. Further analysis of the identified bacteria included the examination of virulent genes, specifically the tcpA gene (472 bp) associated with cholera and the UreC gene (317 bp) linked to urinary tract infections. To enhance the bioaccumulation of cadmium, the study proposes the potential suppression of virulent gene expression through in-silico gene-editing tools such as CRISPR-Cas9. A total of 27 gRNAs were generated for UreC, with five selected for expression. Similarly, 42 gRNA sequences were generated for tcpA, with eight chosen for expression analysis. The selected gRNAs were integrated into the lentiCRISPR v2 expression vector. This strategic approach aims to facilitate precise gene editing of disease-causing genes (tcpA and UreC) within the bacterial genome. In conclusion, this study underscores the potential utility of Vibrio species and Proteus mirabilis as effective candidates for the removal of cadmium from industrial wastewater, offering insights for future environmental remediation strategies.


Assuntos
Cólera , Infecções Urinárias , Vibrio , Humanos , Proteus mirabilis/genética , Cádmio/toxicidade , Sistemas CRISPR-Cas/genética , RNA Ribossômico 16S , Águas Residuárias , RNA Guia de Sistemas CRISPR-Cas , Vibrio/genética
9.
Arch Microbiol ; 206(4): 150, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38466448

RESUMO

Chryseobacterium demonstrates a diverse environmental presence and a significant pathogenic potential across various ecosystems. This clinical case showcases a rare instance of bacterial infection in a 75-year-old male with untreated diabetes and recurrent urinary tract infections (UTIs). The patient presented symptoms of abdominal pain, burning urination, fever, and an elevated eosinophil count. A subsequent urine culture identified a Chryseobacterium-related bacterium as the causative agent, exhibiting sensitivity to piperacillin/tazobactam, trimethoprim/sulfamethoxazole, and nitrofurantoin, which led to successful treatment using oral nitrofurantoin. Analysis of the 16S rRNA gene sequence of APV-1T revealed a close relationship of 98.2% similarity to Chryseobacterium gambrini strain 5-1St1aT (AM232810). Furthermore, comparative genome analysis, incorporating Average Nucleotide Identity (ANI), Digital DNA-DNA Hybridization (dDDH) values, and comprehensive phylogenetic assessments utilizing 16S rRNA gene sequences, core genes, and amino acid sequences of core proteins, highlighted the unique phylogenetic positioning of APV-1T within the Chryseobacterium genus. Distinct carbon utilization and assimilation patterns, along with major fatty acid content, set APV-1T apart from C. gambrini strain 5-1St1aT. These findings, encompassing phenotypic, genotypic, and chemotaxonomic characteristics, strongly support the proposal of a novel species named Chryseobacterium urinae sp. nov., with APV-1T designated as the type strain (= MCC 50690 = JCM 36476). Despite its successful treatment, the strain displayed resistance to multiple antibiotics. Genomic analysis further unveiled core-conserved genes, strain-specific clusters, and genes associated with antibiotic resistance and virulence. This report underscores the vital importance of elucidating susceptibility patterns of rare pathogens like Chryseobacterium, particularly in immunocompromised individuals. It advocates for further analyses to understand the functional significance of identified genes and their implications in treatment and pathogenesis.


Assuntos
Chryseobacterium , Diabetes Mellitus , Infecções Urinárias , Idoso , Humanos , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA , DNA Bacteriano/genética , DNA Bacteriano/química , Ecossistema , Ácidos Graxos/análise , Nitrofurantoína , Hibridização de Ácido Nucleico , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Infecções Urinárias/tratamento farmacológico , Masculino
10.
Infect Immun ; : e0008024, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38534100

RESUMO

Traditional folk treatments for the prevention and management of urinary tract infections (UTIs) and other infectious diseases often include plants and plant extracts that are rich in phenolic compounds. These have been ascribed a variety of activities, including inhibition of bacterial interactions with host cells. Here, we tested a panel of four well-studied phenolic compounds-caffeic acid phenethyl ester (CAPE), resveratrol, catechin, and epigallocatechin gallate-for the effects on host cell adherence and invasion by uropathogenic Escherichia coli (UPEC). These bacteria, which are the leading cause of UTIs, can bind and subsequently invade bladder epithelial cells via an actin-dependent process. Intracellular UPEC reservoirs within the bladder are often protected from antibiotics and host defenses and likely contribute to the development of chronic and recurrent infections. In cell culture-based assays, only resveratrol had a notable negative effect on UPEC adherence to bladder cells. However, both CAPE and resveratrol significantly inhibited UPEC entry into the host cells, coordinate with attenuated phosphorylation of the host actin regulator Focal Adhesion Kinase (FAK or PTK2) and marked increases in the numbers of focal adhesion structures. We further show that the intravesical delivery of resveratrol inhibits UPEC infiltration of the bladder mucosa in a murine UTI model and that resveratrol and CAPE can disrupt the ability of other invasive pathogens to enter host cells. Together, these results highlight the therapeutic potential of molecules like CAPE and resveratrol, which could be used to augment antibiotic treatments by restricting pathogen access to protective intracellular niches.IMPORTANCEUrinary tract infections (UTIs) are exceptionally common and increasingly difficult to treat due to the ongoing rise and spread of antibiotic-resistant pathogens. Furthermore, the primary cause of UTIs, uropathogenic Escherichia coli (UPEC), can avoid antibiotic exposure and many host defenses by invading the epithelial cells that line the bladder surface. Here, we identified two plant-derived phenolic compounds that disrupt activation of the host machinery needed for UPEC entry into bladder cells. One of these compounds, resveratrol, effectively inhibited UPEC invasion of the bladder mucosa in a mouse UTI model, and both phenolic compounds significantly reduced host cell entry by other invasive pathogens. These findings suggest that select phenolic compounds could be used to supplement existing antibacterial therapeutics by denying uropathogens shelter within host cells and tissues and help explain some of the benefits attributed to traditional plant-based medicines.

11.
Proc Natl Acad Sci U S A ; 121(12): e2313574121, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38478693

RESUMO

This study supports the development of predictive bacteriophage (phage) therapy: the concept of phage cocktail selection to treat a bacterial infection based on machine learning (ML) models. For this purpose, ML models were trained on thousands of measured interactions between a panel of phage and sequenced bacterial isolates. The concept was applied to Escherichia coli associated with urinary tract infections. This is an important common infection in humans and companion animals from which multidrug-resistant (MDR) bloodstream infections can originate. The global threat of MDR infection has reinvigorated international efforts into alternatives to antibiotics including phage therapy. E. coli exhibit extensive genome-level variation due to horizontal gene transfer via phage and plasmids. Associated with this, phage selection for E. coli is difficult as individual isolates can exhibit considerable variation in phage susceptibility due to differences in factors important to phage infection including phage receptor profiles and resistance mechanisms. The activity of 31 phage was measured on 314 isolates with growth curves in artificial urine. Random Forest models were built for each phage from bacterial genome features, and the more generalist phage, acting on over 20% of the bacterial population, exhibited F1 scores of >0.6 and could be used to predict phage cocktails effective against previously untested strains. The study demonstrates the potential of predictive ML models which integrate bacterial genomics with phage activity datasets allowing their use on data derived from direct sequencing of clinical samples to inform rapid and effective phage therapy.


Assuntos
Bacteriófagos , Infecções por Escherichia coli , Terapia por Fagos , Infecções Urinárias , Humanos , Animais , Escherichia coli/genética , Infecções por Escherichia coli/microbiologia , Bacteriófagos/genética , Antibacterianos/farmacologia , Infecções Urinárias/tratamento farmacológico
12.
Curr Diab Rep ; 24(5): 108-117, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38427314

RESUMO

PURPOSE OF REVIEW: The aim of this review is to focus on epidemiology, pathogenesis, risk factors, management, and complications of UTI in people with diabetes as well as reviewing the association of SGLT-2 inhibitors with genitourinary infections. RECENT FINDINGS: Individuals diagnosed with T2DM are more prone to experiencing UTIs and recurrent UTIs compared to individuals without T2DM. T2DM is associated with an increased risk of any genitourinary infections (GUI), urinary tract infections (UTIs), and genital infections (GIs) across all age categories. SGLT2 inhibitors are a relatively new class of anti-hyperglycemic agents, and studies suggest that they are associated with an increased risk of genitourinary infections. The management of diabetes and lifestyle modifications with a patient-centric approach are the most recognized methods for preventing critical long-term complications including genitourinary manifestations of diabetes. The available data regarding the association of SGLT-2 inhibitors with genitourinary infections is more comprehensive compared to that with UTIs. Further research is needed to better understand the mechanisms underlining the association between SGLT-2 inhibitors and genital infections and UTIs.


Assuntos
Diabetes Mellitus Tipo 2 , Inibidores do Transportador 2 de Sódio-Glicose , Infecções Urinárias , Humanos , Infecções Urinárias/tratamento farmacológico , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Inibidores do Transportador 2 de Sódio-Glicose/efeitos adversos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/complicações , Fatores de Risco , Hipoglicemiantes/uso terapêutico , Hipoglicemiantes/efeitos adversos
13.
J Clin Microbiol ; 62(4): e0078821, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38457194

RESUMO

Traditionally, cephalothin susceptibility results were used to predict the susceptibility of additional cephalosporins; however, in 2013-2014, the Clinical and Laboratory Standards Institute (CLSI) revisited this practice and determined that cefazolin is a more accurate proxy than cephalothin for uncomplicated urinary tract infections (uUTIs). Therefore, a cefazolin surrogacy breakpoint was established to predict the susceptibility of seven oral cephalosporins for Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis in the context of uUTIs. Clinical microbiology laboratories face several operational challenges when implementing the cefazolin surrogacy breakpoint, which may lead to confusion for the best path forward. Here, we review the historical context and data behind the surrogacy breakpoints, review PK/PD profiles for oral cephalosporins, discuss challenges in deploying the breakpoint, and highlight the limited clinical outcome data in this space.


Assuntos
Cefazolina , Infecções Urinárias , Humanos , Cefazolina/farmacologia , Cefazolina/uso terapêutico , Cefalosporinas/farmacologia , Cefalotina , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Testes de Sensibilidade Microbiana , Infecções Urinárias/tratamento farmacológico , Infecções Urinárias/microbiologia , Escherichia coli , Monobactamas
14.
J Infect Dev Ctries ; 18(2): 251-257, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38484349

RESUMO

INTRODUCTION: This study aimed to isolate and characterize antibiotic-resistant Escherichia coli from urine samples of children at the Mother and Child Hospital in Ondo State, Nigeria, assessing antibiogram profiling and resistance genes. METHODOLOGY: Three hundred urine samples (158 females, 142 males), aged 3-5 years, were collected, transported on ice, and analyzed bacteriologically. E. coli and Gram-negative bacteria were isolated using Eosin Methylene Blue agar and identified through colony morphology and biochemical tests. Antibiotic susceptibility was determined via Kirby Bauer's disc diffusion, and resistance genes were detected using Polymerase Chain Reaction (PCR). RESULTS: Of the 300 samples, 40 (13.3%) yielded E. coli with varying antibiotic resistance profiles. The highest resistance was against Amoxicillin-clavulanate (87.5%) followed by Ceftriaxone (80%). Susceptibility was observed to Nitrofurantoin, Erythromycin, and Chloramphenicol. Multiple resistance patterns against 3-4 antibiotic classes were recorded, with 12 distinct patterns observed. Eight isolates harbored blaCTX-M gene, while five carried the aac3-IV gene. CONCLUSIONS: The study concluded a high occurrence of E. coli infection and multiple antibiotic resistance in the region. The presence of resistance genes suggests significant economic and health implications, emphasizing prudent antibiotic use under physician guidance to mitigate multiple antibiotic resistance.


Assuntos
Infecções por Escherichia coli , Infecções Urinárias , Masculino , Feminino , Humanos , Criança , Escherichia coli , Farmacorresistência Bacteriana Múltipla/genética , Infecções Urinárias/microbiologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Infecções por Escherichia coli/microbiologia , Hospitais
15.
Spectrochim Acta A Mol Biomol Spectrosc ; 314: 124141, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38513317

RESUMO

Among the most prevalent and detrimental bacteria causing urinary tract infections (UTIs) is Klebsiella (K.) pneumoniae. A rapid determination of its antibiotic susceptibility can enhance patient treatment and mitigate the spread of resistant strains. In this study, we assessed the viability of using infrared spectroscopy-based machine learning as a rapid and precise approach for detecting K. pneumoniae bacteria and determining its susceptibility to various antibiotics directly from a patient's urine sample. In this study, 2333 bacterial samples, including 636 K. pneumoniae were investigated using infrared micro-spectroscopy. The obtained spectra (27996spectra) were analyzed with XGBoost classifier, achieving a success rate exceeding 95 % for identifying K. pneumoniae. Moreover, this method allows for the simultaneous determination of K. pneumoniae susceptibility to various antibiotics with sensitivities ranging between 74 % and 81 % within approximately 40 min after receiving the patient's urine sample.


Assuntos
Antibacterianos , Infecções por Klebsiella , Humanos , Antibacterianos/farmacologia , Klebsiella pneumoniae , Infecções por Klebsiella/diagnóstico , Infecções por Klebsiella/tratamento farmacológico , Infecções por Klebsiella/microbiologia , beta-Lactamases , Análise Espectral , Testes de Sensibilidade Microbiana
16.
Cureus ; 16(2): e53999, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38476810

RESUMO

Background Fosfomycin, nitrofurantoin, and co-trimoxazole are cheap and effective first-line oral antimicrobials in cases of uncomplicated cystitis in males and non-pregnant females. Fosfomycin and nitrofurantoin are called urinary antiseptics because these two drugs are primarily excreted in the kidney and concentrated in the urine without systemic effect. The present study was designed to evaluate the in vitro activities of fosfomycin, nitrofurantoin, and co-trimoxazole against uropathogens isolated at King Khalid Hospital Al-Majmaah, KSA. Methods The study was conducted at the King Khalid Hospital Al Majmaah, KSA, from September 1, 2021, until February 28, 2022. The patients' urine samples were inoculated on the Cystein Lactose Electrolytes Deficient (CLED) medium, and uropathogens were isolated. The organisms' identification and sensitivity testing against cotrimoxazole, fosfomycin, and nitrofurantoin was conducted using a Microscan automated analyzer, the MicroScan WalkAway Beckman Coulter, Sacramento, CA, USA. Results The study comprised non-repeat 137 patients who were either admitted to the hospital or treated as outpatients, yielding a total of 147 isolates. Nitrofurantoin showed a lower resistance rate, around 20% (n = 29), followed by fosfomycin at 23% (n = 34). The resistance rate of cotrimoxazole was 43% (n = 63). Overall, nitrofurantoin and fosfomycin showed relatively lower resistance against all isolates. Conclusions Being cheap and effective, we propose that fosfomycin and nitrofurantoin be used as first-line treatments in patients presenting with uncomplicated UTIs.

17.
Exp Ther Med ; 27(4): 140, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38476915

RESUMO

Urinary tract infections (UTIs) are prevalent and recurrent bacterial infections that affect individuals worldwide, posing a significant burden on healthcare systems. The present study aimed to explore the epidemiology of UTIs, investigating the seasonal, gender-specific and age-related bacterial pathogen distribution to guide clinical diagnosis. Data were retrospectively collected from electronic medical records and laboratory reports of 926 UTIs diagnosed in Fuding Hospital (Fujian University of Traditional Chinese Medicine, Fuding, China). Bacterial isolates were identified using standard microbiological techniques. χ2 tests were performed to assess associations between pathogens and the seasons, sex and age groups. Significant associations were found between bacterial species and seasons. Enterococcus faecium exhibited a substantial prevalence in spring (χ2, 12.824; P=0.005), while Acinetobacter baumannii demonstrated increased prevalence in autumn (χ2, 16.404; P=0.001). Female patients showed a higher incidence of UTIs. Gram-positive bacteria were more prevalent in males, with Staphylococcus aureus showing significant male predominance (χ2, 14.607; P<0.001). E. faecium displayed an age-related increase in prevalence (χ2, 17.775; P<0.001), whereas Escherichia coli tended to be more prevalent in younger patients (χ2, 12.813; P=0.005). These findings highlight the complex nature of UTIs and offer insights for tailored diagnostic and preventive strategies, potentially enhancing healthcare outcomes.

18.
JMIR Med Inform ; 12: e51326, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38421718

RESUMO

BACKGROUND: The early prediction of antibiotic resistance in patients with a urinary tract infection (UTI) is important to guide appropriate antibiotic therapy selection. OBJECTIVE: In this study, we aimed to predict antibiotic resistance in patients with a UTI. Additionally, we aimed to interpret the machine learning models we developed. METHODS: The electronic medical records of patients who were admitted to Yongin Severance Hospital, South Korea were used. A total of 71 features extracted from patients' admission, diagnosis, prescription, and microbiology records were used for classification. UTI pathogens were classified as either sensitive or resistant to cephalosporin, piperacillin-tazobactam (TZP), carbapenem, trimethoprim-sulfamethoxazole (TMP-SMX), and fluoroquinolone. To analyze how each variable contributed to the machine learning model's predictions of antibiotic resistance, we used the Shapley Additive Explanations method. Finally, a prototype machine learning-based clinical decision support system was proposed to provide clinicians the resistance probabilities for each antibiotic. RESULTS: The data set included 3535, 737, 708, 1582, and 1365 samples for cephalosporin, TZP, TMP-SMX, fluoroquinolone, and carbapenem resistance prediction models, respectively. The area under the receiver operating characteristic curve values of the random forest models were 0.777 (95% CI 0.775-0.779), 0.864 (95% CI 0.862-0.867), 0.877 (95% CI 0.874-0.880), 0.881 (95% CI 0.879-0.882), and 0.884 (95% CI 0.884-0.885) in the training set and 0.638 (95% CI 0.635-0.642), 0.630 (95% CI 0.626-0.634), 0.665 (95% CI 0.659-0.671), 0.670 (95% CI 0.666-0.673), and 0.721 (95% CI 0.718-0.724) in the test set for predicting resistance to cephalosporin, TZP, carbapenem, TMP-SMX, and fluoroquinolone, respectively. The number of previous visits, first culture after admission, chronic lower respiratory diseases, administration of drugs before infection, and exposure time to these drugs were found to be important variables for predicting antibiotic resistance. CONCLUSIONS: The study results demonstrated the potential of machine learning to predict antibiotic resistance in patients with a UTI. Machine learning can assist clinicians in making decisions regarding the selection of appropriate antibiotic therapy in patients with a UTI.

19.
Clin Microbiol Rev ; 37(1): e0009823, 2024 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-38319102

RESUMO

Schistosomiasis is a neglected tropical disease caused by the helminth Schistosoma spp. and has the second highest global impact of all parasites. Schistosoma are transmitted through contact with contaminated fresh water predominantly in Africa, Asia, the Middle East, and South America. Due to the widespread prevalence of Schistosoma, co-infection with other infectious agents is common but often poorly described. Herein, we review recent literature describing the impact of Schistosoma co-infection between species and Schistosoma co-infection with blood-borne protozoa, soil-transmitted helminths, various intestinal protozoa, Mycobacterium, Salmonella, various urinary tract infection-causing agents, and viral pathogens. In each case, disease severity and, of particular interest, the immune landscape, are altered as a consequence of co-infection. Understanding the impact of schistosomiasis co-infections will be important when considering treatment strategies and vaccine development moving forward.


Assuntos
Coinfecção , Helmintíase , Esquistossomose , Humanos , Coinfecção/epidemiologia , Coinfecção/parasitologia , Esquistossomose/complicações , Esquistossomose/epidemiologia , Esquistossomose/parasitologia , África , Solo/parasitologia , Prevalência , Helmintíase/complicações , Helmintíase/epidemiologia , Helmintíase/parasitologia
20.
Front Med (Lausanne) ; 11: 1360058, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38405191

RESUMO

Background: Urinary tract infection (UTI) is a prevalent and consequential complication in hip fracture patients, leading to significant disability and heightened healthcare expenditures. Consequently, there is a critical need for a comprehensive systematic review to identify risk factors and establish early and effective preventive measures. Methods: A comprehensive search was performed across the PubMed, Cochrane, Embase, Web of Science, and Scopus databases (up to August 31, 2023). Article screening, data extraction, and quality assessment were independently completed by two reviewers. Results: Forty-four studies were eligible for inclusion, yielding an overall incidence rate of 11% (95% CI: 8%-14%). Our pooled analysis revealed 18 significant risk factors, including being female (OR = 2.23, 95% CI: 1.89-2.63), advanced age (MD = 1.35, 95% CI: 0.04-2.66), obesity (OR = 1.21, 95% CI: 1.11-1.31), catheterization (OR = 3.8, 95% CI: 2.29-6.32), blood transfusion (OR = 1.39, 95% CI: 1.21-1.58), American Society of Anesthesiologists ≥III (OR = 1.28, 95% CI: 1.18-1.40), general anesthesia (OR = 1.26, 95% CI: 1.11-1.43), intertrochanteric fracture (OR = 1.25, 95% CI: 1.01-1.54), hemiarthroplasty (OR = 1.43, 95% CI: 1.19-1.69), prolonged length of hospital stay (MD = 1.44, 95% CI: 0.66-2.23), delirium (OR = 2.66, 95% CI: 2.05-3.47), dementia (OR = 1.82, 95% CI: 1.62-2.06), Parkinson's disease (OR = 1.53, 95% CI: 1.46-1.61), diabetes (OR = 1.27, 95% CI: 1.13-1.43), hypertension (OR = 1.14, 95% CI: 1.03-1.26), congestive heart failure (OR = 1.35, 95% CI: 1.10-1.66), history of sepsis (OR = 7.13, 95% CI: 5.51-9.22), and chronic steroid use (OR = 1.29, 95% CI: 1.06-1.57). Conclusion: Our study identifies numerous risk factors strongly associated with UTI, offering compelling evidence and actionable strategies for improving clinical prediction, enabling early intervention, and facilitating targeted UTI management. Systematic review registration: identifier [CRD42023459600], https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=459600.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...